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CRITICAL CURVES IN MIXTURES OF CARBON 
DIOXIDE WITH ETHANE AND ETHYLENE BASED 
ON A GENERALIZED FLUCTUATION FORM 
OF THE VAN DER WAALS EQUATION OF STATE 

V. B. Rogankov and E. D. Terzi UDC 536.71 and 541.11 

CHtieal cutwes of  C02-C2H4 and C02-C2H4 mixtures are investigated using a new fluctuation equa- 
tion of state. Particular attention is paid to the behavior of thermodynamic sensitives in the vicinity of 
the critical azeotropic points, at which the derivative of the molar volume with respect to the compo- 
sition, which has no special .[~,atures in the vicinity of the critical points of the pure components, be- 
comes zero. Reliable agreement between the results of describing the critical curves of the mLttures 
and the known (including volumetric measurements) experiment is obtained. Possible intensification of 
supercritical extraction in using the C02-C2H6 mixture in the vicini~ of the azeotropic point is pre- 
dicted. 

Data on the critical curve (CrC) and the behavior of mixtures in the critical region are urgently re- 
quired when the prospects for employing a system as the working medium of thermal or refrigeration cycles 
are evaluated. Mixtures one of whose components is carbon dioxide (CO2) as well as ethane (C2H6) and eth- 
ylene (C2H4) are o f  significant interest for the processes of  extraction and supercritical fluid chromatography 
that are widely used in the modem food and pharmaceutical industries. The importance of data on the Pcr(T)- 
dependence of a CrC is that the latter divides a phase diagram into two parts: the part of total miscibility of  
the components with any compositions and the part of  heterogeneous equilibria where division processes are 
realized. An advantage of  the above substances is critical temperatures comparable with room temperature and 
relatively low (except for CO2) critical pressures (see Table 1). We can consider the mixtures CO2-C2H4 and 
CO2-C2H¢, investigated in this work interesting from the viewpoint of  practical use since, in them, we observe 
a minimum on the Tcr(x)-dependence of the CrC and there are points of  critical positive azeotropy (CPA) in 
accordance with [1, 2]. In the vicinity of them, not only does the mixture act as a pure substance but, accord- 
ing to the assumption of Rowlinson [I], it is also characterized simultaneously by mechanical and material 

instabilities of the states (a similar coincidence of mechanical and thermal instabilities is absent at the critical 
point of pure substances). In our opinion, this property can substantially improve the extraction efficiency when 
CO2, C2H4, and C2H6 are replaced by their mixtures with the compositions X-----XCPA. The investigation per- 
formed in the work showed that we are to expect significant intensification of the process of  supercritical ex- 

traction in the CO2-C2H6 system in the vicinity of  the parameters XCeA(COz) =0.12, T=  297.2 K, P- -6 .66  
MPa, and v = 102.10 -6 m3/mole. 

It is known that classical semiempirical van der Waals equations of  state (VDW-ESs) predict unrealis- 

tic values of the compressibility factor Zcr = Pcrvcr/RTcr and the reduced slope (the Ridel parameter) of the 
Ps(T)-dependence: Act = (Tcr/Pcr)(dP/dT)cr at the critical point of a pure substance. Similar ESs describe very 
approximately the liquid branch pUq(T) of the coexistence curve (CoexC) and reflect qualitatively incorrectly 

the behavior of  thermodynamic derivatives in the critical region. In spite of  the enumerated drawbacks, it is 
generally agreed that some most successful modifications (they include primarily the Redlich-Kwong (RK) ES 
and its numerous variants) are able to simultaneously provide realistic information on the coexistence surface 
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TABLE 1. Critical Parameters and Coefficients Used in CrC Calculations 

Substance 

C2H4 

CO2 

C~H6 

Tcr, K 

282.34 

304.17 

305.34 

Pcr, MPa 

5.0389 

7.3860 

4.8713 

~ cr, 
cm-/mole 

130,46 

94.162 

145.35 

0,2532 

0.2667 

0.2563 

b, 
cm3/mole 

43.487 

31.387 

48.450 

a~ 

N.m4/mole 

0.2573 

0.1965 

0.3087 

(t.06 

-0.08 

0.09 

(CoexS) and the critical curve of mixtures. This viewpoint is superfluously optimistic if it is remembered that 
the adoption of thermodynamic conditions in the indicated regions requires sets that are different for CoexS 
and CrC, respectively, and are matched to the data of  a specific system of coefficients of "heterogeneous inter- 
actions." Furthermore, CrC parameters are required in constructing the scaling ES of mixtures that is proposed 
by Leung and Griffiths [3]. This approach is based on the hypothesis of isomorphism of the behavior of mix- 
tures and pure components in the critical region. The scaling of the latter assumes individual critical parameters 
Zcr and Acr to be insignificant in the context of  the hypothesis of universality. If  semiempirical ESs that do not 
describe the indicated parameters in a pure substance were able to reliably predict the CrC parameters of a 
mixture this would lead to the following paradox: a scaling description of the vicinity of the CrC would be 
based, in this case, on the classical ES, which fails to allow for fluctuations and is considered to be an an- 

tipode of the scaling ES. 
We will show below that we are able to coordinate to some extent the classical and scaling approaches 

within the framework of the model of fluctuation thermodynamics (FT) [4, 5]. Its essence is in consistent al- 
lowance for the fluctuations of  local (field and density) variables, which leads to the dependence of  the coef- 
ficients of microscopic description on thermodynamic response functions (compressibilities, heat capacities). 
Use is made of the tact that the method of the FT model enables us to derive, under certain assumptions, a 
new fluctuation ES (FES) whose coefficients are directly related both to the average relative fluctuations of the 
density (A) of state and the average virial (o3) of the system. It is proposed that the indicated FES be mapped 
onto a modified VDW-form that contains the fluctuation coefficients a, b, and c. The third of them enables us 

to use experimental data on the critical volume Vcr (and hence Zcr) along with two characteristics of the critical 
point (Per, Tcr) commonly used in determining the coefficients a and h in VDW-ESs and RK-ESs. Finding the 
coefficients of an FES using the critical parameters corresponds to a quasiclassical form of the approach devel- 
oped. CrC parameters for two mixtures of hydrocarbons with carbon dioxide are calculated. 

Fluctuation Equat ion of State in a Quasiclassical  Form.  The proposed mapping of an FES 14, 51 
onto a modified VDW-tbrm appears as 

03(1+&2) 2 k B T n ( l - c )  2 
P = n ° k B T -  6 no  - 1 - b n  a n  , ( 1 ) 

where n (_< no = N / V )  is the characteristic fluctuation density determined by the root-mean-square fluctuation 

2 1/2 (A2)1/2 (2) 
A = ((  1 - n / n o )  ) = > O .  

The first equality in (I)  is an FES derived with the use of  the virial theorem and the assumption, of  the FT 
model, of the presence of stationary and homogeneous density fluctuations in each equilibrium state of  a sys- 
tem of finite volume V. We note that, in classical ESs, the density no itself is considered to be stationary and 
homogeneous (i.e., equilibrium), whereas in a system of  finite volume the experimenter measures a value that 
is only close to n but, strictly speaking, not equal to the average value (no). The fundamental difference of FES 
(1) from other forms of ESs lies in an accurate fluctuation detemlination of each of the coefficients a, b, and 

C: 

1 - c = (1 - A ) / (  1 + A 2 )  I/~- > 0 ,  (3) 

404 



b = k / n  = A / [ n  o (1 + A2) 1/2] = I / n  - (1 - c ) / n  o > O ,  (4) 

a= to/6=(V/6) (l + A2) -t/2 < y~ r 0 dUo/d,~i) >_ O, 
i,i 

(5) 

where the sum allows for all forms of pair interactions U 0 of the considered system. All determinations (1)-(5) 
pertain equally to pure substances and mixtures with any number of  components. This agrees with the VDW 

concept, according to which a mixture of constant composition x is described by the same ES as the pure 
components. At the same time, there is a certain contradiction with the scaling ES, where, according to the 
proposition of Leung and Griffiths 131, x should be replaced by a certain combination of field variables (vola- 
tilities). In explicit tbrm, the dependence on composition is found only in the coefficients of  (3)-(5), where it 
is recognized as expedient to employ two standard corrections (k, l) to the combination rules proposed by 

Lorentz-Berthelot: 

C = CIX / + 2CI2XIX2 + C'~I-" 2 , C12 = (C 1 + c 2 ) / 2  " 
(6) 

b = b lX  I + 2bl~VlX 2 + b~v 2 , hi2 = ( 1 - I) (b I + b2)/2 ; (7) 

a = al.v ~ + 2a ,~ , x  2 + aex ~ , a,2 = (1 - k)  (a ,a2)  ' /2 (8) 

and written here for a binary mixture. We note that the tbrm of expression (6) for the coefficient c and the use 
of arithmetic-mean (expression (7)) and geometric-mean (expression (8)) combinations of  the corresponding co- 
efficients of  the pure components are in complete agreement with the interrelationship of the FES coefficients 

that lollows from (3)-(5). 
A reliable calculation of the average values (A, co) for specific systems is far from being a trivial prob- 

lem, and therefore it is pertinent to evaluate the capabilities of  FES (1), toremost in the critical region of pure 

substances. By adopting standard conditions of the critical point it is easy to express all the coefficients (ai, hi, 
ci) in terms of the experinaentai values of the critical parameters (Tcr, Vcr, PcOi 

8 PcrVcr 8Zcr i (9) 

b i = Vcri/3 , (lo) 

"3 
a i = 3 (Per Vcr)i ' (11 ) 

where Vcr is the molar critical volume of the i-th component. Equations (10) and (11) correspond to an ordinary 
VDW-ES, and of greatest importance is the possibility of expressing, using (3) and (9), the maximum (critical) 
level of  fluctuations &ri in terms of the corresponding value of the compressibility factor -cri. 

Computat ional  Procedure  for the Critical Curve  of Binary  Mixtures. According to Gibbs, the criti- 

cal point of a mixture is determined by the conditions 

(Og/ax)e. r = O, (12) 

(O'~t /Ox-)e .  r = O, (13) 
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which can easily be rewritten (see, for example, [6]) in ES terms. A significant difference of this work from 
numerous variants of searching for the CrC using on classical semiempirical ESs (usually RK-ES) is the em- 
ployment of a new FES (1) that is expressed in terms of the molar volume: 

RT(I -c )  a 
P = 2 (14) 

V - - / 9  V 

and that corresponds only formally to a certain three-constant modification of the VDW-ES. Unlike the latter, 
the coefficients a, b, and c are accurately defined functions (3)-(5) of the density fluctuations and the virial of 
the system of interacting particles, averaged over the volume. In principle, this leads to an effective dependence 
of the indicated coefficients on the parameters of equilibrium state that appears in them in terms o f  the men- 
tioned average characteristics. In this work, use is made of a quasiclassical approximation for FES (9)-(11) that 
holds true in describing near-critical states of pure substances. The values of the coefficients presented in Table 
1 are determined by the critical parameters of the components, and the values of the standard corrections k and 
! to the Lorentz-Berthelot combination rules in (7) and (8) for the usual single-liquid approximation are the 
only additional information required for calculating the CrC of a mixture. 

The accuracy of the description of the CoexS of phases and the CrC of a mixture depends strongly on 
the corrections k and l, which in turn are determined by the adopted ES model. Of course it is preferable to 
find k and 1 independently of experimental thermodynamic data using microscopic intormation on the parame- 
ters of the effective (and model) potential for heterogeneous interactions. However it should be taken into ac- 
count that the always existing inadequacy of model (micro- and macro-) representations must lead to ambiguity 
of parameters k and 1 obtained by different procedures. In our opinion, this reduces somewhat the utility of 
numerous attempts, initiated by the well-known work of Scott and van Konynenburg [71, at representing a 
comprehensive diagram of the critical and phase behavior of mixtures in terms of one selected ES and as a 
function of some combinations of its coefficients. Indubitable is the ability of this diagram to render qualita- 
tively correctly all the observed (and even to predict new) types of Pcr(T)-projections of the CrC but at the 
same time the possibilities of using it for a quantitative description seem very limited. 

Here it should be noted that the majority of researchers (see, for example, [8, 9]) seek to describe only 
Pcr(T)-dependences and, accordingly, Per(X)- and Tcr(X)-projections and ignore the volumetric Vcr(x)-behavior of 
the system along the CrC and in its vicinity. This approach is forced in many respects when use is made of 
RK-type classical ESs that do not describe the actual values of Vcr (and Zcr). At the same time, it gives no way 
of investigating in full measure the effect of the correction / in (7) determined precisely by critical volumetry. 
This problem acquires special importance in the case of gas-liquid CrCs where infinitely dilute critical phases 
can exist [10]. In particular, it is of interest to investigate the abnormality of the partial molar volume of the 
solvent Vl: 

V 1 = V - -  X ( ~ l , ' / O X ) p . r ,  (15) 

which does not tend to the critical molar volume Vcr I along the CrC but experiences a finite jump when 
x---~0. The possibility of such behavior of this derivative was substantiated thermodynamically in [11, 12] and 
was verified experimentally in [13, 14]. In this case, the derivative (Ov/3x)p. T must tend to infinity [10]. Rowl- 
inson [1] predicted the divergence of this derivative at the CPA point, too. Fluctuation equation of  state (1) 
used in the work ensures rather simple tbrmul~s that permit the study of basic derivatives for the CrC: 

VKT,=-(~v  I - v3 (v -h)  2 
LOP)T.~ R T ( 1 - c )  v 3 - 2 a ( v - h )  2' 

(16) 
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Fig. 1. Comparison of calculated and experimental data on the critical 
curve of a CO2-C2H4 mixture: 1) experiment [15, 16]; 2) FES, k = 0, l = 
0; 3) FES, k = 0.08, / = 0.05; the average relative error: (~SP) = 0.32% and 

(87") = 0.16%; the maximum absolute deviation: L~°max = 0.55 MPa and 
ATmax = 1.2 K. P, MPa; T, K; x, mol. fraction of CO2; v, m3/mole. 

v (Or] RTc, R T ( l - c )  b, a r . =  - -  = . + _ _ ~  
'(02CJp.T v - b  ( v - h )  2 v ' '  

(17) 

v. /  ( VKT.v) = ( OP /Ox)V,T , (18) 

1 0v 
where the subscript x denotes the derivative with respect to the composition; KT., = ---(,-~n)T,,. 

Results  for the Critical Curves in C21t4-CO 2 and COz-C2H6 Mixtures. In solving the system of 
equations (12) and (13), use was made of a variant of the "predictor-corrector" method developed by the 
authors that leads to rapid and rather reliable evaluation of corrections k and I (see Table 1) in Eqs. (7) and 
(8) matched to one experimental point of the CrC: Per, Tcr, and Vet of the composition x = 0.5 or of  a similar 
composition. It is obvious that the selection of the composition x = 0.5 is random and can be changed when 
this method (we hope to present it in detail in a following paper) is used. Rowlinson [ I 1, tbr example,  strongly 
recommended using data on the CPA point for evaluating the parameters of "heterogeneous interactions." Since 
in both mixtures the predicted compositions of the CPA point turned out to be somewhat larger than the com- 
positions found earlier by x(CO2), preference was given to the composition x = 0.5. We note that in the 
C2H4-CO2 mixture, using a rather approximate extrapolation evaluation of the experiment of  Haselden et al. 
[15, 16], XCPA(CO2) = 0.42 was obtained [1, 17] and our result is XCpA(CO2) = 0.62; in the C z H 6 - C O  2 mixture, 
correspondingly, the CPA data [1, 18, 19] are xCPA(CO2) = 0.71 and our result is XCpA(CO2) = 0.88. All the 
critical parameters of the pure components and the mixtures shown in Table 1 and Figs. 1 and 2 are taken 
from [17-19]. Unfortunately, the available experimental data on the CrCs of the mixtures are scanty and not 
very accurate and rarely contain measurements of the volumetric behavior. With allowance for this fact, the 
accuracy of the description of CrC data in the work should be recognized as satisfactory. In particular, the 
parameters of  the minima of Tcr(X)-projections are in complete agreement with the available experiment. 

Of  special interest are the dependences of derivatives (16) and (17) along the CrC given in Fig. 3. 
Whereas the behavior of the isothermal compressibility Kv.~ (16) in the vicinity of the CPA point and the criti- 
cal points of  the pure components indicates the divergence of this derivative in complete agreement with a 
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Fig. 2. Comparison of calculated and experimental data on the critical 
curve of a CO2-C2H6 mixture: 1) experiment [20]; 2) same [21]; 3) ap- 
proximation [18, 19]; 4) FES; k = 0, l = 0; 5) FES; k = 0, l = -0.05; the 
average relative error: (SP) = 2.3%, (~T) = 0.1%, and (Sv) = 2.8%; the 
maximum absolute deviation: APma × = (I.25 MPa, A T m a  x = 0.97 K, and 
Avma x = 7.5.10 -6  m3/mole. 
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Fig. 3. Derivatives KT,,. and vx along the critical curve of a C 2 H 4 - C O 2  

mixture: 1) Kr.,; 2) (0v/0x)p.v; 3) XCPA = 0.65. KT-,, GPa-l;  (~v/Ox)p.r, 
m3/mole. 

thermodynamic analysis [1], data on v x (17) confirm the available experiment [1] rather than the Rowlinson 
analysis [1]. We found that, at the CPA point, this derivative passes through zero (and does not diverge) and, 
furthermore, within the framework of FESs (1) and (11), it remains finite as the critical points of  the compo- 
nents are approached (at least for the compositions x = 0.05 and 0.95). The scaling description [17-19] is based 
on the assumption of a weak (renormalized) divergence of the derivative KTx along the CrC. This property 
(which is hard to check experimentally) can also be detected using FESs (1) and (14). We found that the 

regions of stable (binodal curve) and unstable behavior are extremely similar (within an average accuracy 
of -2% ibr the experiment on the critical volume). We note that these facts can prove to be very useful if the 
parameters k and / are predicted from data on the effective potential rather than matched (as in this work) to 
an experiment on the critical point. 

The authors express their thanks to L. A. Rott and I. I. Narkevich for their attention to the work and 

useful consultations. 
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NOTATION 

no = N/V, bulk (homogeneous) density of the number of particles N confined in volume V; n, fluctua- 
tion density of the number of particles; Zcr, critical compressibility factor; Per, critical pressure; Tcr, critical 
temperature; Vcr, critical molar volume; Act, Ridel parameter; pliq, density of the liquid mass on the coexistence 
curve; kB, Boltzmann constant; A, average fluctuation of  the density n; co, average virial of the system of  par- 
ticles; a, h, and c, fluctuation coefficients of the equation of state; U6(r6), effective potential of pair interac- 
tions; x, .q, and x2, composi t ions  of  the components  of the mixture; k and l, correction factors for 
"heterogeneous interactions"; H, chemical potential; v =V/N , molar volume of the mixture; Vl, partial molar 
volume of the first component; KT,r, isothermal compressibility of a mixture of constant composition; v~, de- 
rivative of the molar volume with respect to the composition at constant P and T; Ps, pressure of the saturated 
vapor of a pure component. 
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